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Abstract We discuss some combinatorial properties of genomic and proteomic
sequences and propose semigroup theory as a versatile algebraic method for their
study. In particular, we consider biologically equivalent but not identical sequences
and finding hidden regularities therein.
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1 Introduction

Amidst the constantly changing environment, every organism tries to survive. This
includes its striking conservatism to continue produce almost identical biopolymer
molecules—DNA, RNA, and proteins. Here, the word “almost” needs in a special
clarification. As it was generally observed, some segments of such biopolymers allow
to substitute them with distinct ones, so that this does not alter the functions of an
organism. On the other hand, the replacement of these with very similar segments may
bring different biological disturbances. Taking into account both equally important
facts, we state herein our mathematical task, as it will be done below.

B Vladimir R. Rosenfeld
vladimir_rosenfeld@yahoo.com; rosenfev@tamug.edu

1 Mathematical Chemistry Group, Department of Marine Sciences, Texas A&M University
at Galveston, Galveston, TX 77553-1675, USA

2 Present Address: Department of Computer Science and Mathematics, Ariel University,
40700 Ariel, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-015-0501-y&domain=pdf


J Math Chem (2015) 53:1488–1494 1489

In a more general context, one may consider not only substitutions – but also
insertions and deletions (which combined together give the term indels, used in bioin-
formatics) as well as permutations in a biopolymer chain (read also: genomic or
proteomic sequence). Since our sequences are represented by words (strings) over
the alphabet encoding nucleotides or amino acids, the problem of equivalent alter-
nations of a protein or polynucleotide chain is nothing else than the problem of the
equivalence of words (being synonyms). This equivalence, in particular, means the
equality of respective words as products of factors, e.g., characters, in a certain semi-
group. That is, equal words here represent equal elements of a semigroup (specially
called a monoid if contains a unit). Just such a semigroup-theoretical approach is
considered herein.

A nonempty set X = {x1, x2, . . . , xn} is an arbitrary collection of elements without
repetitions, of any nature, such as numbers, amino acids, etc.. The cardinality, or
size, |X | of the set X is the number n of elements thereof (|X | = n). A function
f (x, y) in two variables x and y (where in general f (x, y) �= f (y, x)) implements
a binary operation on the set X if ∀x, y ∈ X the value z = f (x, y) also belongs to
X (x, y, z ∈ X). Say, let X be the set of all even numbers and f (x, y) := x · y; setting
x = 2 and y = 4, we obtain 2 · 4 = 8, where 8 is also an even number and, hence,
also belongs to X . They say that the set X is closed with respect to this operation (·).

A groupoid (X; (·)) is a nonempty set X with a binary operation (·), which is
conditionally called herein the multiplication, such that ∀a, b ∈ X a · b ∈ X . Here,
we use a simpler notation ab for a · b, as usually done in algebra.

A semigroup S = (S; (·)) is an associative groupoid such that ∀a, b, c ∈ S abc =
(ab)c = a(bc). An example is again the numbers; say, 3·4 ·5 = (3·4)·5 = 3·(4 ·5) =
12 · 5 = 3 · 20 = 60. The associativity of S means the ability to arbitrarily partition
(by parentheses) the product of elements into factors. They say that the product of
elements, in S, does not depend on a distribution of parentheses. Another instance is
matrices, when one considers the usual (scalar) product thereof. But the vector product
of vectors is not associative! An example of an associative operation from calculus is
the composition of two functions f (x) and ϕ(x) defined as f ϕ ≡ f · ϕ := f [ϕ(x)].
In our context, the major part is played by the concatenation of words, say when a
word w = w1w2w3 can be obtained by either concatenating w1w2 and w3 or by
concatenating w1 and w2w3, where w may represent a polynucleotide or polypeptide
chain.

A unit, or neutral element, e in S is the element such that ∀a ∈ S ea = ae = a.
In the case of the numbers, clearly, e = 1. A semigroup may be without a unit,
but one may always deliberately add e to an arbitrary semigroup S, without it, and
obtain a semigroup S1 with a unit, which is specially called a monoid. Herein, we
work with multiplicative monoids, but use also the more general term “semigroup”
to reduce at times the overuse of the term “monoid” and when a statement is true
for both words interchangeably. Anyway, a monoid is an instance of the semigroup,
such as the monoid of all (res. integer, positive, even, odd, rational, complex) numbers
by multiplication. Note that the most familiar specific case of a monoid is a group
G, where, in particular, each element has its unique inverse, as is the monoid of all
rational numbers without a zero (0); say, 2 has (1/2) as its inverse (and vice versa), and
2 ·(1/2) = (1/2) ·2 = 1 = e. Recall symmetry groups having symmetry operations as
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elements, andwhere a binaryoperationproduces the result of consecutively performing
two symmetry operations. In the case of words representing biological sequences (or
whichever else), a role of a unit is played by an emptyword (with no character therein).

A semigroup S is commutative (noncommutative or anticommutative), if ∀a, b ∈
S ab = ba (∃ a, b, c, d ∈ S such that ab = ba but cd �= dc or ∀a, b ∈ S ab �=
ba, respectively). An infinite (anticommutative) semigroup F of words over a finite
alphabet A is a free semigroup, if all products of characters from A are algebraically
unequal therein.

A word (or string) is a sequence of characters over the alphabet A = {a1, a2, . . .}
thereof. In the case of proteins, A represents all (characters denoting) amino acids,
whose number is 20 or 21, with a triple of stop codons encoding the nonexistent 21st
amino acid. Herein, we identify the alphabet A with a semigroup S but without its
unit, if any. Since we earlier decided to write down products of elements of S without
multiplication signs (a ·b · c ⇒ abc), the products and words have the same algebraic
meaning. We specially note the following. Two words are orthographically equally
spelled if and only if these are identical (as “abc” and “abc” again), whereas, in an
algebraic sense (of the product of elements of S), there may exist infinitely many equal
words having distinct spellings (and also lengths).

Now, we turn to more practical actions.

2 The main part

We begin with the following result:

Lemma 1 Let M(3 ≤ |M | = n) be an arbitrary finite monoid, and let w denote
an arbitrary (nonempty) word over the alphabet A = M\{e}. Then, there exist infi-
nitely many words v over A such that vw and wv are orthographically distinct but
algebraically equal: vw = wv.

Proof For any pair ab and cd of orthographically distinct words of length 2, words
abcd and cdab are also orthographically distinct (a, b, c, d ∈ A). Since there exist
(n − 1)2 > n − 1 nonempty two-character words, there is at least one pair of alge-
braically equal words, among them; and the same is also true for such words of any
length l ≥ 2. This completes the proof. 
�
Remark In Lemma 1, w is an arbitrary nonunit element of a finite monoid M . Obvi-
ously, in the case of a nonfree infinite monoid M∞, there also exist infinitely many
pairs v and w of orthographically distinct but algebraically equal words (vw = wv);
however, we cannot a priori assert that such pairs exist for an arbitrary w, as in the
case of a finite monoid M , in Lemma 1.

Corollary 1.1 Let M(3 ≤ |M | = n) be an arbitrary finitemonoid, and letw denote an
arbitrary (nonempty) word over the alphabet A = M\{e}. Also, let σ denote a circular
permutation of a word u = wv. Then, there exist infinitely many pairs of words u and
respective circular permutations σ thereof such that algebraically σu = u.
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Proof By virtue of Lemma 1, there exist infinitely many words v such that wv = vw.
But the last equality also notates a circular permutation of the word u = wv by |w|
positions clockwise (where |w| is the length of w). This affords the proof. 
�

Note that the possibility of equivalent circular permutations of a genomic sequence
is by now an experimentally established fact [1–6]. This might also be predicted purely
theoretically using Corollary 1.1 or directly Lemma 1. But there exists also a special
case in which circular permutations of a nucleotide sequence do not alter a circular
sequence of produced amino acids in the respective protein (translated from the same
circular sequence of nucleotides with a shift of frame), as was rigorously studied in
[7].

The next statement is a generalizing corollary of Lemma 1:

Lemma 2 Let M(3 ≤ |M | = n) be an arbitrary finite monoid, and let w be and
arbitrary (nonempty) word over the alphabet A = M\{e}. Then, there exist infi-
nitely many pairs of orthographically distinct but algebraically equal words avwb
and awvb(avwb = awvb), where v is a word over A and a, b ∈ M.

Proof By virtue of Lemma 1, ∃ v,w ∈ M such that vw = wv; and, due to the
associativity of M , ∀a, b ∈ Mavwb = a(vw)b = a(wv)b = awvb. Since the
infiniteness of the number of such pairs avwb and awvb is apparent, we arrive at the
overall proof. 
�

Lemma 2 in turn leads to a more general result, viz.:

Proposition 3 Let M(3 ≤ |M | = n) be an arbitrary finite monoid. Let w j ( j ≥ 1)
denote an arbitrary finite word over the alphabet A = M\{e}. Then, there exist
infinitely many pairs α = a1v1w1a2v2w2 · · · b and β = a1v∗

1w
∗
1a2v

∗
2w

∗
2 · · · b(α = β)

of orthographically distinct but algebraically equal in M words, where a j , b ∈ M,
and v∗

jw
∗
j = v jw j .

Proof It is due to a repetitive application of Lemma 2. 
�
This general case is also illustrated by an experimental data [8]. It is worth specially
emphasizing that the discussed possibility of equivalent permutations of genomic
sequences is a direct consequence of their combinatorial semigroup-theoretical nature.

The overall approach should include orthographically distinct but algebraically
equal pairs of words, e.g.,

a1b1a2b2 · · · atbt = a1b
∗
1a2b

∗
2 · · · atb∗

t , (1)

where a j , b j , b∗
j ∈ M, b j �= b∗

j , and j ∈ [1, t]. Earlier, we studied [9] a special case
with b j ∈ A and b∗

j = e( j ≥ 1), which corresponds to equivalent insertions/deletions
(indels).

Lastly, what is more general than the equality of words is the equivalence thereof,
according to a certain criterion. Such a criterionmaybe due to thehomomorphism (one-
valued mapping), if any, of the monoid M onto a group G; accordingly, equivalent
elements and equal to them words are those which are preimages of one common
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element g ∈ G. Here, say, all idempotents (elements a for which a2 = a) of M are
the preimages of the unit e of G; in a more general case, they may belong to a normal
subsemigroup N of M (in notation: N � M), which may locally be defined as a
subsemigroup being the preimage of the unit e of G (under a certain homomorphism),
while all idempotents of M belong to N . We want to note that, in algebraic sense,
the words over the alphabet B ∈ G\{e} are all equal to respective homomorphic
images of words over A = M\{e} and may also be of certain (independent) interest
for researchers (see also below).

3 Discussion

Here, we make a more general theoretical discussion which may give an idea of
further realistic applications of semigroups in the context of our paper, though such
applications may have not yet been implemented in practice. We realize that the very
idea of speaking the semigroup-theory language may often come later than practical
approaches emerged in nonmathematical areas, such as chemistry and biology. Part of
these approaches may also be semigroup-theoretic in their essence but they have not
yet made use of the notion of semigroup.

Equivalent permutations and the other transformations of words are not, as such,
the only “linguistic” example of an application of semigroups. As a continuation of
the topic, one may consider the recognition of hidden regularities in a sequence. Here,
we may carry out an elementary gedanken experiment consisting of two steps.

First, write down the entire alphabet as a word:

w = abcde f ghi jklmnopqrstuvwxyz. (2)

Which regularities may w have, besides the alphabetical order? For instance, let
us imagine that the alphabet is partitioned into nonintersecting subsets of characters
such that all characters in each subset have an assigned common value or meaning,
in a certain (abstract) sense. Let such subsets be: X1 := {a, e, i,m, q, u, y}; X2 :=
{b, f, j, n, r, v, z}; X3 := {c, g, k, o, s, w}; X4 := {d, h, l, p, t, x}. Since the char-
acters within each subset are equal for us, we rewrite our word using just the first
elements of each subset and obtain:

w′ = abcdabcdabcdabcdabcdabcdab, (3)

i.e., the substitution of a representative of each subset X j ( j ∈ [1, 4]) for all the other
characters thereof, in w, “developed” (like a photo) a possible hidden regularity in w.
This orthographic transformation ofw tow′ is done usingmapping of the alphabet into
itself, having just four images: a, b, c, d. Of course, this specific regularity devised
here is just an imagined artificial trick to illustrate how “erasing differences” among
certain characters may similarly develop a more real regularity in practice. Note that
“erasing differences” between characters is a familiar method in bioinformatics [10–
13] (which also allows using empty boxes for “wobble” characters). In particular,
they so study evolutionary mutations of certain factors of genomic sequences, when
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it is needed to find a common ancestor of factors whose transformation has made
them considerably deviated from a common origin. Apparently, in general, one may
consider the equivalence of factors of lengths≥ 1 in a word. Recall that we considered
above equal factors of words – such factors (composed from more than one character)
might also be reduced to common spellings thereof, each of which is algebraically
equal to any other in a common equivalence class. This may also develop a hidden
regularity.

Second, one may consider the semigroup S of all mappings of consecutive charac-
ters of the wordw intow itself, obeying a criterion of the preimage-image equivalence
of factors (when an image factor equals its preimage one). Since all such mappings,
if any, comprise by composition a semigroup, the last may in general contain normal
subsemigroups. If at least one proper normal subsemigroup N exists, then there exists
also the homomorphism of S onto a group G; and vice versa, the existence of such a
homomorphism is always associated with the existence of N . Namely, G keeps (rep-
resentations of) possible symmetry operations related to the hidden symmetry of w.
The task of practically describing S is not so easy in general but, fortunately, even
without it, here we know that two nonunit elements of our G correspond to shifts by
four characters to the right and left, along w′, until there will be achieved a respective
end thereof. Hence, we can “retrospectively” conclude that S does possess a proper
normal subsemigroup. Thus, indeed, theory of semigroups may describe (or even find)
hidden regularities, e.g., periodicity in a sequence (or 1-dimensional quasicrystalline
order, in other cases).

As to the very existence of such regularities, the famous theorem of Van der Waer-
den, Ramsey, and Shirshov (see p. 1 in [14]) states that every infinite sequence of a
finite number of symbols contains an arbitrary long periodic subsequence. It is not in
general true for finite sequences. But another famous, Sampling Theorem of Whit-
taker, Nyquist, Shannon, and Kotel’nikov [15] (about the spectrum of a transmitted
complex signal) gives, as an indirect corollary, an assertion that the probability to find
an (almost) periodic subsequence in a finite sequence grows with the length thereof.
Since biological applications presuppose very large semigroups and even infinite ones,
knowing a type of such a semigroup may itself play a helpful role (see [9]) in the inter-
disciplinary research on genomic and proteomic sequences.

4 Conclusions

Using a reduced alphabet of symbols to denote nucleotides (amino acids) may be
helpful in discovering regularities. Say, using three digits 1, 2, and 3 to denote fatty
amino acids, polar amino acids, and serine, respectively, allowed to carry out a certain
original research on the polypeptide sequence of the bacterium Escherichia coli [16].
In a broader context, sequences with imagined regularities may also be studied in a
similar way [17].

Semigroups may be helpful in two cases. First, semigroups may algebraically
describe the orthography of equivalent words (synonyms) and help to study the lan-
guage to which the words pertain, when the equivalence of words is one important
aspect of this. Second, considering a word merely as a “meaningless” sequence of

123



1494 J Math Chem (2015) 53:1488–1494

symbols, theory of semigroups may help to find hidden regularities in such a sequence
and describe possible symmetry operations thereon.
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